Abstract martingale convergence theorems
نویسندگان
چکیده
منابع مشابه
Davis-type Theorems for Martingale Difference Sequences
We study Davis-type theorems on the optimal rate of convergence of moderate deviation probabilities. In the case of martingale difference sequences, under the finite pth moments hypothesis (1 ≤ p <∞), and depending on the normalization factor, our results show that Davis’ theorems either hold if and only if p > 2 or fail for all p ≥ 1. This is in sharp contrast with the classical case of i.i.d....
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملPolya’s Urn and the Martingale Convergence Theorem
This paper is about Polya’s Urn and the Martingale Convergence Theorem. I will start with the formal definition, followed by a simple example of martingale and the basic properties of martingale. Then I will explain the Polya’s Urn model and how it contributes to proving the Martingale Convergence Theorem. Finally, I will give a full proof of the Martingale Convergence Theorem.
متن کاملMartingale limit theorems revisited and non-linear cointegrating regression
For a certain class of martingales, the convergence to mixture normal distribution is established under the convergence in distribution for the conditional variance. This is less restrictive in comparison with the classical martingale limit theorem where one generally requires the convergence in probability. The extension removes a main barrier in the applications of the classical martingale li...
متن کاملLimit Theorems for Spectra of Random Matrices with Martingale Structure
We study classical ensembles of real symmetric random matrices introduced by Eugene Wigner. We discuss Stein’s method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the semi-circular law.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1961
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1961.11.347